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Abstract
This paper views the movements of people among locations
as a spatial interaction problem, where locations interact
with each other via shared visitors. The connection between
two specific locations can be weighted with several alterna-
tive weight definitions. The purpose of this research is to
analyze the general characteristics of such spatial interac-
tions and propose a strategy to explore and visualize such
a large volume of data and reveal important patterns. The
proposed strategy combines clustering, ordering, and visual
techniques to efficiently present overall patterns and provide
an interface for visual data mining and decision-support in
response to possible disease outbreaks.

1 Introduction

The movements of individuals between specific locations
and the contacts between different groups of people
are essential in modeling disease spread [7]. The daily
activity of people from place to place forms a complex
and dynamic network of spatial interactions between
locations.

The understanding of such spatial interactions can
be difficult due to several reasons. First, the interaction
network is extremely complex and difficult to model as
many factors are involved and such factors also change
over time. Second, such interaction data are often very
difficult to acquire. However, researchers have begun
to generate or discover such data sources, for example,
generating simulation data of people’s daily activities
[3], [7] or using surrogate information (e.g., bank notes)
to model human travel activities [5]. Third, such
interaction data is often very large, unique, and complex
(in terms of potential patterns), which demands special
data mining algorihtms to process and effective visual
approaches to reveal/present the patterns. Few existing
methods can cope with such a large data volume and
complexity.

The data used in this paper is a very large collection
of simulated human activities in an urban setting for a
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normal day, which includes over 8 million records and
each record shows a specific activity (e.g., the person
ID, location ID, activity type, time, duration, etc.).
There are altogether over 1.6 million people and 181,295
unique locations [7]. This data set is available from
http://ndssl.vbi.vt.edu/opendata.

This activity data set can be analyzed from different
perspectives. This paper views such activities as a
spatial interaction problem [2], [6], where locations
interact with each other via the visitors that they share.
§2 introduces several basic definitions and parameters
to characterize such a spatial interaction network. In
§3 I present an overall analysis of the characteristics
of the spatial interaction network formed with the
simulation data. Based on the general analysis of the
spatial interaction properties, §4 proposes a strategy
to aggregate data, synthesize information, and visually
present patterns to allow human interpretation and
decision-support during pandemic outbreaks.

2 Problem Definition

The activity data that involve N locations and P people
is tranformed to a N × N spatial interaction matrix.
If the dynamics of interactions across time are also
considered, then we have a space-time system defined by
N×N×T , where T is time (in seconds). To quantify the
”strength” of interaction between two specific locations,
I define two measures in this section. The simple one is
to use the ”flow” of people between locations, i.e., the
number of shared visitors between two locations. The
other one uses the percentages of visitors they share
instead of the raw count (see §2.3).

2.1 Bipartite graph. Bipartite graphs are often
used to model the people-location relations [7]. As
shown in Figure 1, for each day one person may visit
several locations (places) and a location (place) may
have many different visitors. However, existing analyses
of a bipartite graph often focus on either people or
locations and examine the degree distribution for each
node [7], [5]. How to define the relationship between
locations that do not have direct connections in the
barpartite graph? In this paper, two locations are
”connected” if they share at least one visitor for a
normal day. This definition is similar to that presented
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Figure 1: A bipartite of people’s daily activities (ignor-
ing time). Two locations are connected if they share at
least one visitor. For example, locations 1 and 3 share
three visitors (i.e., person 1, 2, and 3).

in [16] but is different from that defined in [7] where two
locations connect only if there is at least one person
whoe moves directly from one location to the other
location.

2.2 Spatial interaction. Not all elements in the
N × N spatial interaction matrix have values. Some
locations do not share any visitor and thus have no con-
nection to each other. The value for each connection,
i.e., the weight (or connection strength) between two
locations, can be defined by the number of visitors (Ps)
they share, the location pair strength (see next subsec-
tion), or simply the geographic distance. Thus, we can
view the spatial interaction matrix as a graph/network
of locations. The density of a graph (see [17]) is defined
as:

∆ = 2Lpc/(L(L− 1)),(2.1)

where ∆ is the graph density, Lpc is the number of edges
(or connections) in the graph, and L is the total number
of nodes (or vertices) involved. Here I define a similar
but simpler measure, connection ratio (Cr):

Cr = Lpc/L,(2.2)

which is more efficient to calculate for a very large data
set. As we know that we need at least L−1 connections
to connect L locations . Therefore, if Cr is close to 1.0,
the network or graph is barely connected and easy to
break.

2.3 Location pair strength. Instead of using the
number of shared neighbors to define the connection
weight, we also calculate a location pair strength (Lps),
as defined below:

Lps = 10000P 2
s /(LaLb),(2.3)

where Ps is the number of visitors between two specific
locations a and b, and La and Lb are the total visitors
to locations a and b, respectively. The constant 10000
is just to scale the measure so the it ranges from 0 to
10000. This measure takes into acount the location
size (in terms of daily visitors) and the number of
shared visitors. In other words, the strength is defined
by the percentage of visitors that two locations share.
Intuitively, the higher percentage they share, the more
likely that those people contact each other.

3 General Properties

In this section I present a series of analysis of the loca-
tion network to understand some general characteristics
of spatial interactions. Such general characteristics are
important for developing a successful strategy to explore
and visualize the data and patterns.

3.1 Location pair count vs. shared visitors.
Figure 2 shows the total number of location pairs (Lpc)
that share exactly Ps visitors. The two variables exhibit
a strong power-law relationship. This indicates that
the spatial interaction network can be dramactically
reduced and simplied if we remove location pairs that
share less than a certain number of neighbors (e.g., 5).

Figure 3 shows the connection ratio Cr for all
location pairs that share Ps visitors. It indicates that
Cr can be dramactically decreased if weak connections
(e.g., Ps < 5) are discarded.

3.2 Geographic distance vs. shared visitors.
Figure 4 presents the relationship between the number
of shared visitors (Ps) and the average distance of all
location pairs that share exactly Ps visitors. Both the
average and the standard deviation are shown. it shows
that location pairs that share one or two visitors vary
greatly in distances, with an average distance of about
8km. Location pairs that share more visitors tend to
be closer in space. Again, it shows roughly a power-law
trend, which means that strong connections (in terms
of shared visitors) are often localized.

3.3 Location pair strength. Figures 5 and 6 are
similar to Figures 2 and 3, respectively, except that
the number of shared visitors (Ps) is replaced with the
location pair strength (Lps).
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Figure 2: The total number of location pairs (Lpc) that
share exactly Ps visitors.
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Figure 3: The connection ratio Cr for all location pairs
that share Ps visitors.
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Figure 4: The relationship between the number of
shared visitors (Ps) and the average distance of all
location pairs that share exactly Ps visitors. Dark blue
points are the average distances and pink points are the
standard deviation values.
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Figure 5: The relationship between the location pair
strength (Lps) and the number of all location pairs that
have that strength. The red curve shows the moving
average (with a window of size 10).
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Figure 6: The connection ratio Cr for those location
pairs that have a strength of Lps

4 Mining and Visualizing Interaction Patterns

The above analysis result indicates taht it is possible to
segment and partition the spatial interaction network
to synthesize the data, explore patterns, and visulize
patterns in an aggregated form. However, there are
two major challenges to achieve this goal. First, the
large data size (millions of records) requires that the
data mining algorithm should be scalable [8]. Second,
given the complexity of potential patterns in the N ×
N × P × T (i.e., location-location-people-time) space,
effective visual approaches are needed help human users
(or decision-makers) to interpret patterns [9], [10].

4.1 Hierarchical clustering of locations. Given
the spatial interaction network/graph, locations are first
grouped into a hierarchy of clusters. Graph-based clus-
tering methods are potential candiated for this task [8],
[11], [4]. However, most of these clustering methods
are often of complexity O(n2 log n) or O(n3), which
is not efficient enough to process over 180,000 loca-
tions. Although the sinlge-link method is of complexity
O(n log n), it is generally not as good as other clustering
methods.

A two-step clustering may be adopted. The purpose
of the first step is to aggregate locations, via sampling
[14], simplifying (e.g., removing weak location connec-
tions), or partitioning [1]. Then the second step is to
perform a hierarchical clustering with the much smaller
set of aggregates (or samples).

4.2 1D Ordering of locations. An ordering can
also be obtained from a hierarchical clustering result.
A cluster hierarchy, represented by a dendrogram, is
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Figure 7: Space-time view of people’s movements.

a binary tree with each data point as a leaf node.
To derive a one-dimensional ordering from a cluster
hierarchy, several different methods are available [9], [4].
The purpose of the 1D ordering is twofold.

First, to discover patterns accross several differents
dimensions (e.g., the N ×N ×P ×T space), we have to
project some dimensions to a lower-dimensional space.
In this case, we project the spatial locations to a 1D
space so that we can add time to the view (see Figure
7).

Second, a one-dimensional ordering can preserve
more information than a cluster hierarchy. An ordering
tries to arrange locations so that locations with strong
connections (more shared visitors, high pair strength,
or short distance) are placed as close as possible to each
other in the ordering. For example, if the weight for
location connections is defined as the number of shared
visitors, then locations that share many people will be
close to each other in the ordering. If a person visits
places that are far from each other in the ordering, then
the activity of this person can be seen as an ”outlier”
[15].

4.3 Visualizing people movements across space
and time. Now since locations are ordered in a 1D
space, a space-time view can be constructed, with time
as the horizontal axis and locations on the vertical axis.
Then the daily movement of a person can be drawn as
curve in the space-time view (see Figure 7). We can also
aggregate nearby locations in the ordering to reduce the
number of rows. Such an aggregation is possible because
locations that are close in the ordering are also strongly
connected in the interacion graph. Thus, we have a
spatio-temporal view of all people.

However, given the huge number of people involved



(¿1.6 million), clustering is again needed to simplify the
view yet perserve major patterns. In addition to derive
clusters of people according to their interactions with
locations, we can also resort to a ’visual’ approach [13],
which visualizes densities (i.e., how many person overlap
at each location-time pixel) instead of each individual
person.

This space-time view can facilitate the decision-
making process in response to a pandemic outbreak.
For example, suppose there are 10 person infected at
the very beginning. We can show the activities of the
10 person for the past 24 hours in the space-time view.
Then people that ’overlap’ with one of those 10 person
are selected and this view can potentially help identify
the most severe areas to take immediate actions. Based
on simulation data, it may also show the projected
developement for the next 24 hours if no action was
taken.
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